Skip to main content

NestJS Application Using CQRS Design Pattern

In this article, we will implement the CQRS Design Pattern in the NestJS sample application.

CQRS:

CQRS stands for Command Query Responsibility Segregation. CQRS guides us to separate our logical implementation into 2 categories like 'Command', 'Query'. The 'Commands' specifies the operation like creation or updating of data into the data source(database). The 'Query' specifies the operations to fetch the data.

PostgreSQL Database:

For this demo, I'm using the free open-source PostgreSQL database. Here I'm going to use the PostgreSQL docker image because it is easy and fast to set up and configure. Click here to getting started with PostgreSQL docker.

Run the below command to create an example table for a demo like 'Person'.
CREATE TABLE Person(
 Id SERIAL PRIMARY KEY NOT NULL,
 Name Text NULL,
 Age INT NULL
)

Create A NestJS Application:

Let's begin our demo by creating a sample NestJS application.
Command To Install NestJS CLI
npm i -g @nestjs/cli

Command To Create NestJS APP
nest new your_project_name

Initial Setup:

Let's install the ORM packages for the database communication.
Install NestJS Type ORM
npm install --save @nestjs/typeorm

Install NodeJS Type ORM
npm install --save typeorm

Install NodeJS PostgreSQL
npm install --save pg

Now let's create a class that represents our 'Person' table, so add these classes into folders like 'entities'.
Run the below command to generate our table class.
nest g cl entities/person --no-spec

src/entities/person.ts:
import { Column, Entity, PrimaryGeneratedColumn } from 'typeorm';

@Entity({name:'person'})
export class Person {
  @PrimaryGeneratedColumn('increment',{name:'id'})
  id: number;

  @Column({name:'name'})
  name: string;

  @Column({name:'age'})
  age: number;
}
Now let's configure the database settings in the 'app.module.ts'.
src/app.module.ts:
import { TypeOrmModule } from '@nestjs/typeorm';
import { Person } from './entities/person';

@Module({
  imports: [
    TypeOrmModule.forRoot({
      type:'postgres',
      host:'localhost',
      port: 5432,
      username: 'postgres',
      password:'secret',
      database:'myworlddb',
      entities:[Person]
    })
  ]
})
export class AppModule {}
  • (Line: 13) Need to register our table classes with in the 'entities' array.
Now let's create a 'person.module.ts', so let's run below command to make our work easy.
nest g mo person

Now let's create a 'person.controller.ts', so lets run the below command.
nest g co person --no-spec

Now update the 'person.module.ts' by registering the 'TypeOrmModule.feature()'.
src/person/person.module.ts:
import { Module } from '@nestjs/common';
import { TypeOrmModule } from '@nestjs/typeorm';
import { Person } from 'src/entities/person';
import { PersonController } from './person.controller';

@Module({
  imports:[TypeOrmModule.forFeature([Person])],
  controllers: [PersonController]
})
export class PersonModule {}

Install And Configure CQRS NestJS Package:

Let's first install the CQRS NestJS package, so run the below command.
 npm install --save @nestjs/cqrs

Now register the 'CqrsModule' in 'person.modulet.ts'.
src/person/person.module.ts:
import { CqrsModule } from '@nestjs/cqrs';
// code hidden for display purpose
@Module({
  imports:[CqrsModule]
})
export class PersonModule {}
  • Here imported 'CqrsModule' that loads from the '@nestjs/cqrs'.

Implement CQRS QueryHandler:

The QueryHandler is a class that contains logic to fetch the data from the data source. So to implement the CQRS query 2 main things we need are like 'Implementation Model(or Request Model)', 'Query Handler'.

So let's create 'Implementation Model(or Request Model)', this model will be implemented by the 'QueryHandler' that tells us a story like one 'Implementation Model' is designated to one 'QueryHandler'. In the controller, we will instantiate our 'Implementation Model' it will automatically involve the respective 'QueryHandler' that implements it. So let's create an 'Implementation Model' file like 'src/person/queries/impl/get-persons.query.ts'.
nest g cl person/queries/impl/get-persons.query --no-spec

src/person/queries/impl/get-persons.query.ts:
export class GetPersonsQuery {}
  • The 'GetPersonsQuery' is our 'Implementation Model'. Here is one more interesting thing we can observe my class is totally empty, so in case if we have any query params then we have to add properties for them into our 'Implementation Model'.
Let's create our 'QueryHandler' that has the logic to fetch data from the data source. So let's create a file like 'src/person/queries/handlers/get-persons.handler.ts'.
nest g cl person/queries/handlers/get-persons.handler --no-spec

src/person/queries/handlers/get-persons.handler.ts:
import { IQueryHandler, QueryHandler } from '@nestjs/cqrs';
import { InjectRepository } from '@nestjs/typeorm';
import { Person } from 'src/entities/person';
import { Repository } from 'typeorm';
import { GetPersonsQuery } from '../impl/get-persons.query';

@QueryHandler(GetPersonsQuery)
export class GetPersonsHandler implements IQueryHandler<GetPersonsQuery> {
  constructor(
    @InjectRepository(Person) private personRepo: Repository<Person>,
  ) {}
  async execute(query: GetPersonsQuery): Promise<Person[]> {
    return await this.personRepo.find();
  }
}
  • (Line: 7) Our handler must register with a decorator like '@QueryHandler' that loads from the '@nestjs/cqrs'.
  • (Line: 8) Our handler class need to implement 'IQueryHandler<TRequestModel>'.
  • (Line: 9-11) Inject our 'Person' table entity repository that provides default methods to interact with the database.
  • (Line: 12) The 'excute' method gots auto executed on invocation of our handler and to this method, our 'Implementation Model(or Request Model)' will by the input parameter.
  • (Line: 13) Fetching all records from the database.
Now register our 'GetPersonHandler' into the 'person.module.ts'.
src/person/person.module.ts:
import { GetPersonsHandler } from './queries/handlers/get-persons.handler';
// code hidden for display purpose
@Module({
  providers:[GetPersonsHandler]
})
export class PersonModule {}
Now let's create an endpoint that invokes our QueryHandler.
src/person/person.controller.ts:
import { Controller, Get } from '@nestjs/common';
import { QueryBus } from '@nestjs/cqrs';
import { GetPersonsQuery } from './queries/impl/get-persons.query';

@Controller('person')
export class PersonController {
  constructor(private readonly queryBus: QueryBus) {}

  @Get('all')
  async getAll() {
    return await this.queryBus.execute(new GetPersonsQuery());
  }
}
  • (Line: 7) Inject the 'QueryBus' instance that loads from the '@nestjs/cqrs'.
  • (Line: 11) Pass the instance of our 'Implementation Model' that is 'GatPersonQuery' as input to the execute method of the 'QueryBus' that will implicitly invoke our 'QueryHandler'.
Now let's test our endpoint and check the results.

Implement CQRS CommandHandler:

The CommandHandler is a class that contains logic to save data into the data source. So to implement the CQRS command 2 main things we need are like 'Implementation Model(or Request Model)', 'Command Handler'.

So let's create 'Implementation Model(or Request Model)', this model will be implemented by the 'CommandHandler' that tells us a story like one 'Implementation Model' is designated to one 'CommandHandler'. In the controller, we will instantiate our 'Implementation Model' it will automatically involve the respective 'CommandHandler' that implements it. So let's create an 'Implementation Model' file like 'src/person/commands/impl/save-person.command.ts'.
nest g cl person/commands/impl/save-person.command --no-spec

src/person/commands/impl/save-person.commands.ts:
export class SavePersonCommand {
  name: string;
  age: number;
}
  • The 'SavePersonCommand' is our 'Implementation Model' which is also our payload model for API endpoint.
Let's implement 'CommandHandler' to save data in the store. So let's create a file like 'src/person/commands/handler/save-person.handler.ts'.
nest g cl person/commands/handler/save-person.handler --no-spec

src/person/commands/handler/save-person.handler.ts:
import { CommandHandler, ICommandHandler } from "@nestjs/cqrs";
import { InjectRepository } from "@nestjs/typeorm";
import { Person } from "src/entities/person";
import { Repository } from "typeorm";
import { SavePersonCommand } from "../impl/save-person.command";

@CommandHandler(SavePersonCommand)
export class SavePersonHandler implements ICommandHandler<SavePersonCommand> {

    constructor(
        @InjectRepository(Person) private personRepo: Repository<Person>,
      ) {}
    async execute(command: SavePersonCommand) {
        var person = new Person();
        person.age = command.age;
        person.name = command.name;
        await this.personRepo.insert(person);
    }
}
  • (Line: 7) The 'SavePersonHandler' is decorated with '@CommandHandler' that loads from '@nestjs/cqrs'.
  • (Line: 8) Our Command Handler should implement 'ICommandHandler<TRequestModel>'.
  • (Line: 13-18) Saving a new record into the database.
Now register our 'SavePersonHandler'(command handler) into the 'person.module.ts'.
src/person/person.module.ts:
import { SavePersonHandler } from './commands/handler/save-person.handler';
// code hidden for display purpose
@Module({
  providers:[SavePersonHandler]
})
export class PersonModule {}
Now let's create a save endpoint.
src/person/person.controller.ts:
import { Body, Controller, HttpCode, Post } from '@nestjs/common';
import { CommandBus } from '@nestjs/cqrs';
import { SavePersonCommand } from './commands/impl/save-person.command';
//code hidden for display purpose
@Controller('person')
export class PersonController {
  constructor(private readonly commandBus:CommandBus) {}

  @Post('add')
  @HttpCode(201)
  async createEmployee(@Body() newPerson: SavePersonCommand) {
    return await this.commandBus.execute(newPerson);
  }
}
  • (Line: 7) Injected 'CommandBus' that loads from '@nestjs/cqrs'
  • (Line: 9-13) Save action method, invoking the command handler from the 'CommandBus.execute()'.
Now try to test our endpoint.
Now we can observe an error message from the response, now if go to our project and in the terminal, we can see the actual error as below.

The reason behind the above error is in our save action method input parameter is like '@Body() newPerson: SavePersonCommand' so on receiving request 'newPerson' variable captures the payload as a javascript object but our CommandBus expects class type. So to fix this we have to install the below libraries.
npm install class-transformer

npm install class-validator

Now update action method as below:
@Post('add')
@HttpCode(201)
@UsePipes(new ValidationPipe({ transform: true }))
async createEmployee(@Body() newPerson: SavePersonCommand) {
return await this.commandBus.execute(newPerson);
}
  • (Line: 3) The 'ValidationPipe({transform:true})' helps to make our action input parameter as the class object instead of javascript object.
Now test endpoint again and we can observe the successful results as below

Finally our CQRS design pattern project folder structure as below

Support Me!
Buy Me A Coffee PayPal Me

Video Session:

Wrapping Up:

Hopefully, I think this article delivered some useful information on the CQRS Design Pattern implementation in the NestJS application. I love to have your feedback, suggestions, and better techniques in the comment section below.

Refer:

Follow Me:

Comments

  1. This comment has been removed by the author.

    ReplyDelete
  2. What exactly commandbus will do and event bus will do

    ReplyDelete
  3. I would like to know about commandbus and eventbus

    ReplyDelete
  4. Thanks a lot for neat and clean explanation

    ReplyDelete

Post a Comment

Popular posts from this blog

.NET6 Web API CRUD Operation With Entity Framework Core

In this article, we are going to do a small demo on AspNetCore 6 Web API CRUD operations. What Is Web API: Web API is a framework for building HTTP services that can be accessed from any client like browser, mobile devices, desktop apps. In simple terminology API(Application Programming Interface) means an interface module that contains a programming function that can be requested via HTTP calls to save or fetch the data for their respective clients. Some of the key characteristics of API: Supports HTTP verbs like 'GET', 'POST', 'PUT', 'DELETE', etc. Supports default responses like 'XML' and 'JSON'. Also can define custom responses. Supports self-hosting or individual hosting, so that all different kinds of apps can consume it. Authentication and Authorization are easy to implement. The ideal platform to build REST full services. Create A .NET6 Web API Application: Let's create a .Net6 Web API sample application to accomplish our

A Small Guide On NestJS Queues

NestJS Application Queues helps to deal with application scaling and performance challenges. When To Use Queues?: API request that mostly involves in time taking operations like CPU bound operation, doing them synchronously which will result in thread blocking. So to avoid these issues, it is an appropriate way to make the CPU-bound operation separate background job.  In nestjs one of the best solutions for these kinds of tasks is to implement the Queues. For queueing mechanism in the nestjs application most recommended library is '@nestjs/bull'(Bull is nodejs queue library). The 'Bull' depends on Redis cache for data storage like a job. So in this queueing technique, we will create services like 'Producer' and 'Consumer'. The 'Producer' is used to push our jobs into the Redis stores. The consumer will read those jobs(eg: CPU Bound Operations) and process them. So by using this queues technique user requests processed very fastly because actually

Part-1 Angular JWT Authentication Using HTTP Only Cookie[Angular V13]

In this article, we are going to implement a sample angular application authentication using HTTP only cookie that contains a JWT token. HTTP Only JWT Cookie: In a SPA(Single Page Application) Authentication JWT token either can be stored in browser 'LocalStorage' or in 'Cookie'. Storing JWT token inside of the cookie then the cookie should be HTTP Only. The HTTP-Only cookie nature is that it will be only accessible by the server application. Client apps like javascript-based apps can't access the HTTP-Only cookie. So if we use authentication with HTTP only JWT cookie then we no need to implement custom logic like adding authorization header or storing token data, etc at our client application. Because once the user authenticated cookie will be automatically sent to the server by the browser on every API call. Authentication API: To implement JWT cookie authentication we need to set up an API. For that, I had created a mock authentication API(Using the NestJS Se

Usage Of CancellationToken In Asp.Net Core Applications

When To Use CancellationToken?: In a web application request abortion or orphan, requests are quite common. On users disconnected by network interruption or navigating between multiple pages before proper response or closing of the browser, tabs make the request aborted or orphan. An orphan request can't deliver a response to the client, but it will execute all steps(like database calls, HTTP calls, etc) at the server. Complete execution of an orphan request at the server might not be a problem generally if at all requests need to work on time taking a job at the server in those cases might be nice to terminate the execution immediately. So CancellationToken can be used to terminate a request execution at the server immediately once the request is aborted or orphan. Here we are going to see some sample code snippets about implementing a CancellationToken for Entity FrameworkCore, Dapper ORM, and HttpClient calls in Asp.NetCore MVC application. Note: The sample codes I will show in

Unit Testing Asp.NetCore Web API Using xUnit[.NET6]

In this article, we are going to write test cases to an Asp.NetCore Web API(.NET6) application using the xUnit. xUnit For .NET: The xUnit for .Net is a free, open-source, community-focused unit testing tool for .NET applications. By default .Net also provides a xUnit project template to implement test cases. Unit test cases build upon the 'AAA' formula that means 'Arrange', 'Act' and 'Assert' Arrange - Declaring variables, objects, instantiating mocks, etc. Act - Calling or invoking the method that needs to be tested. Assert - The assert ensures that code behaves as expected means yielding expected output. Create An API And Unit Test Projects: Let's create a .Net6 Web API and xUnit sample applications to accomplish our demo. We can use either Visual Studio 2022 or Visual Studio Code(using .NET CLI commands) to create any.Net6 application. For this demo, I'm using the 'Visual Studio Code'(using the .NET CLI command) editor. Create a fo

Blazor WebAssembly Custom Authentication From Scratch

In this article, we are going to explore and implement custom authentication from the scratch. In this sample, we will use JWT authentication for user authentication. Main Building Blocks Of Blazor WebAssembly Authentication: The core concepts of blazor webassembly authentication are: AuthenticationStateProvider Service AuthorizeView Component Task<AuthenticationState> Cascading Property CascadingAuthenticationState Component AuthorizeRouteView Component AuthenticationStateProvider Service - this provider holds the authentication information about the login user. The 'GetAuthenticationStateAsync()' method in the Authentication state provider returns user AuthenticationState. The 'NotifyAuthenticationStateChaged()' to notify the latest user information within the components which using this AuthenticationStateProvider. AuthorizeView Component - displays different content depending on the user authorization state. This component uses the AuthenticationStateProvider

Angular 14 Reactive Forms Example

In this article, we will explore the Angular(14) reactive forms with an example. Reactive Forms: Angular reactive forms support model-driven techniques to handle the form's input values. The reactive forms state is immutable, any form filed change creates a new state for the form. Reactive forms are built around observable streams, where form inputs and values are provided as streams of input values, which can be accessed synchronously. Some key notations that involve in reactive forms are like: FormControl - each input element in the form is 'FormControl'. The 'FormControl' tracks the value and validation status of form fields. FormGroup - Track the value and validate the state of the group of 'FormControl'. FormBuilder - Angular service which can be used to create the 'FormGroup' or FormControl instance quickly. Form Array - That can hold infinite form control, this helps to create dynamic forms. Create An Angular(14) Application: Let'

How Response Caching Works In Asp.Net Core

What Is Response Caching?: Response Caching means storing of response output and using stored response until it's under it's the expiration time. Response Caching approach cuts down some requests to the server and also reduces some workload on the server. Response Caching Headers: Response Caching carried out by the few Http based headers information between client and server. Main Response Caching Headers are like below Cache-Control Pragma Vary Cache-Control Header: Cache-Control header is the main header type for the response caching. Cache-Control will be decorated with the following directives. public - this directive indicates any cache may store the response. private - this directive allows to store response with respect to a single user and can't be stored with shared cache stores. max-age - this directive represents a time to hold a response in the cache. no-cache - this directive represents no storing of response and always fetch the fr

Different HttpClient Techniques To Consume API Calls In Minimal API[.NET6]

In this article, we are going to implement different HttpClient techniques to consume API calls in minimal API. The different HttpClient techniques that we are going to explore are like: Register HttpClient Object Explicitly In DI(Dependency Injection Service) Named Client Type Client HttpRequestMessage Object Create A .NET6 Minimal API Project: Let's create a .Net6 Minimal API sample project to accomplish our demo. We can use either Visual Studio 2022 or Visual Studio Code(using .NET CLI commands) to create any.Net6 application. For this demo, I'm using the 'Visual Studio Code'(using the .NET CLI command) editor. CLI command For Minimal API Project dotnet new webapi -minimal -o Your_Project_Name Create A Third Party API Response Model: Here I'm going to use a free third-party rest API that is "https://jsonplaceholder.typicode.com/posts". So to receive the response let's create a response model like 'Post.cs'. Program.cs:(Add Post.cs c

.Net5 Web API Managing Files Using Azure Blob Storage

In this article, we are going to understand the different file operations like uploading, reading, downloading, and deleting in .Net5 Web API application using Azure Blob Storage. Azure Blob Storage: Azure blob storage is Microsoft cloud storage. Blob storage can store a massive amount of file data as unstructured data. The unstructured data means not belong to any specific type, which means text or binary data. So something like images or pdf or videos to store in the cloud, then the most recommended is to use the blob store. The key component to creating azure blob storage resource: Storage Account:- A Storage account gives a unique namespace in Azure for all the data we will save. Every object that we store in Azure Storage has an address. The address is nothing but the unique name of our Storage Account name. The combination of the account name and the Azure Storage blob endpoint forms the base address for each object in our Storage account. For example, if our Storage Account is n