Skip to main content

NestJS JWT Auth Cookie Series - Part-1 - User Registration

This is the first installment of the NetsJS JWT Auth Cookie Series. In this part our main focus on user registration by the NestJS endpoint.

PostgreSQL Database:

For this demo, I'm using the free open-source PostgreSQL database. Here I'm going to use the PostgreSQL docker image because it is easy and fast to set up and configure. Click here to getting started with PostgreSQL docker.

Run the following database query to create the 'User' table.

 FirstName VARCHAR(200) NULL,
 LastName VARCHAR(200) NULL,
 Password VARCHAR(200) NOT NULL,
 RefreshToken VARCHAR(1000) NULL,
 RefreshTokenExp DATE NULL

Create A NestJS App:

Let's begin our demo by creating a sample NestJS application.
Command To Install NestJS CLI
npm i -g @nestjs/cli
Command To Create App
nest new your_project_name

Install ORM And PostgreSQL NPM Packages:

ORM packages are essential to install because they provide some boilerplate functional mechanism that builds the bridge between our application and database for communication.
Install NestJS Type ORM
npm install --save @nestjs/typeorm
Install NodeJS Type ORM
npm install --save typeorm
Install PostgreSQL node library.
Install NodeJS PostgreSQL
npm install --save pg

Configure PostgreSQL Settings:

Here I'm running my PostgreSQL using docker. Now we have to set up database configuration into our application to establish communication.
import { TypeOrmModule } from '@nestjs/typeorm';
// code hidden for display purpose
  imports: [
      port: 5432,
      username: 'postgres',
export class AppModule {}
  • The 'TypeOrmModule' is a generic module that can be easily compatible with most database configurations.
  • (Line: 6) The 'type' property to define the database. So here we mentioned our database is 'postgres'.
  • (Line: 7) The 'host' property to define the database host. Since our demo using docker instance, so our value will be 'localhost'.
  • (Line: 8) The default port number Postgres runs is 5432. Here I used the same port to expose from my docker instance.
  • (Line: 9-10) Database credentials like 'username' and 'password'. (Note: Since here I'm using docker, these values can be given when running the docker container.  If you don't specify the user name then the default username will be 'postgres').
  • (Line: 11) Define the name of the database.
  • (Line: 12) All table classes need to be defined in the 'entities' array.

Create User Files:

Now we have to create all user-related files like 'module', 'service', 'controller', 'entity'.
Command To Create Module File
nest g mo Users
Command To Create Service File
nest g s Users --no-spec
Command To Create Controller File
nest g co Users --no-spec
Command To Create Class File
nest g cl Users/user --no-spec
Note: Remove the 'UsersController' from 'AppModule' and register the 'UsersController' in 'UsersModule'.

User Table Entity:

Now let's update our 'src/users/user.ts' file with all table relate columns as properties.
import { Column, Entity, PrimaryColumn, PrimaryGeneratedColumn } from 'typeorm';

export class User {
  userId: number;

  firstName: string;

  lastName: string;

  email: string;

  password: string;

  @Column({ nullable: true,name:'refreshtoken' })
  refreshToken: string;

  @Column({ type: 'date', nullable: true, name:'refreshtokenexp' })
  refreshTokenExp: string;
Now register our 'User' entity in 'users.module.ts' and 'app.module.ts'.
import { TypeOrmModule } from '@nestjs/typeorm';
import { User } from './user';
// code hidden for disply purpose
  imports: [TypeOrmModule.forFeature([User])],
  providers: [UsersService],
export class UsersModule {}
import { TypeOrmModule } from '@nestjs/typeorm';
import { User } from './users/user';
// code hidden for display purpose
  imports: [
export class AppModule {}

Install BCRYPT NPM Package:

For password hashing, we will use 'bcrypt' node package.
Command For bcrypt Node Package
npm i bcrypt
Command For bcrypt Typescript Package
npm i -D @types/bcrypt

Implement Registration Logic:

Now let's create request and response models for the registration endpoint.
export class RegistrationReqModel {
  firstName: string;
  lastName: string;
  email: string;
  password: string;
  confirmPassword: string;
export class RegistrationRespModel {
  successStatus: boolean;
  message: string;
Inject the 'User' repository instance into the 'UserService'.
import { Injectable } from '@nestjs/common';
import { InjectRepository } from '@nestjs/typeorm';
import { RegistrationReqModel } from 'src/models/registration.req.model';
import { RegistrationRespModel } from 'src/models/registration.resp.model';
import { Repository } from 'typeorm';
import { User } from './user';
import * as bcrypt from 'bcrypt';

export class UsersService {
  constructor(@InjectRepository(User) private user: Repository<User>) {}
Add logic to validate the registration payload before creating the new user.
private async registrationValidation(regModel: RegistrationReqModel): Promise<string> 
    if (! {
      return "Email can't be empty";

    const emailRule =
    if (!emailRule.test( {
      return 'Invalid email';

    const user = await this.user.findOne({ email: });
    if (user != null && {
      return 'Email already exist';

    if (regModel.password !== regModel.confirmPassword) {
      return 'Confirm password not matching';
    return '';
  • Here we implemented few rules like email validation, email already exists or not, comparing password value with confirm password.
Now using 'bcrypt' package we have to hash our password before saving to the database.
private async getPasswordHash(password: string): Promise<string> {
 const hash = await bcrypt.hash(password, 10);
 return hash;
Now let's create our entry method of our user registration.
public async registerUser(
    regModel: RegistrationReqModel,
  ): Promise<RegistrationRespModel> {
    let result = new RegistrationRespModel();

    const errorMessage = await this.registrationValidation(regModel);
    if (errorMessage) {
      result.message = errorMessage;
      result.successStatus = false;

      return result;

    let newUser = new User();
    newUser.firstName = regModel.firstName;
    newUser.lastName = regModel.lastName; =;
    newUser.password = await this.getPasswordHash(regModel.password);

     await this.user.insert(newUser);
    result.successStatus = true;
    result.message = 'success';
    return result;
Let's create our registration endpoint.
import { Body, Controller,   Post } from '@nestjs/common';
import { RegistrationReqModel } from 'src/models/registration.req.model';
import { UsersService } from './users.service';

export class UsersController {

    constructor(private userService:UsersService){}

    async registerUser(@Body() reg: RegistrationReqModel){
        return await this.userService.registerUser(reg);
Now test the registration endpoint.
Open Postgres Docker interactive terminal and query the recently registered user record.

So that's all about the NetstJS user registration. In the next part, we will create a jwt auth cookie.

Video Session:

Support Me!
Buy Me A Coffee PayPal Me

Wrapping Up:

Hopefully, I think this article delivered some useful information on NestJS user registration. I love to have your feedback, suggestions, and better techniques in the comment section below.


Source Code

Follow Me:


Popular posts from this blog

Blazor WebAssembly Custom Authentication From Scratch

In this article, we are going to explore and implement custom authentication from the scratch. In this sample, we will use JWT authentication for user authentication. Main Building Blocks Of Blazor WebAssembly Authentication: The core concepts of blazor webassembly authentication are: AuthenticationStateProvider Service AuthorizeView Component Task<AuthenticationState> Cascading Property CascadingAuthenticationState Component AuthorizeRouteView Component AuthenticationStateProvider Service - this provider holds the authentication information about the login user. The 'GetAuthenticationStateAsync()' method in the Authentication state provider returns user AuthenticationState. The 'NotifyAuthenticationStateChaged()' to notify the latest user information within the components which using this AuthenticationStateProvider. AuthorizeView Component - displays different content depending on the user authorization state. This component uses the AuthenticationStateProvider

How Response Caching Works In Asp.Net Core

What Is Response Caching?: Response Caching means storing of response output and using stored response until it's under it's the expiration time. Response Caching approach cuts down some requests to the server and also reduces some workload on the server. Response Caching Headers: Response Caching carried out by the few Http based headers information between client and server. Main Response Caching Headers are like below Cache-Control Pragma Vary Cache-Control Header: Cache-Control header is the main header type for the response caching. Cache-Control will be decorated with the following directives. public - this directive indicates any cache may store the response. private - this directive allows to store response with respect to a single user and can't be stored with shared cache stores. max-age - this directive represents a time to hold a response in the cache. no-cache - this directive represents no storing of response and always fetch the fr

.Net5 Web API Managing Files Using Azure Blob Storage

In this article, we are going to understand the different file operations like uploading, reading, downloading, and deleting in .Net5 Web API application using Azure Blob Storage. Azure Blob Storage: Azure blob storage is Microsoft cloud storage. Blob storage can store a massive amount of file data as unstructured data. The unstructured data means not belong to any specific type, which means text or binary data. So something like images or pdf or videos to store in the cloud, then the most recommended is to use the blob store. The key component to creating azure blob storage resource: Storage Account:- A Storage account gives a unique namespace in Azure for all the data we will save. Every object that we store in Azure Storage has an address. The address is nothing but the unique name of our Storage Account name. The combination of the account name and the Azure Storage blob endpoint forms the base address for each object in our Storage account. For example, if our Storage Account is n

.Net5 Web API Redis Cache Using StackExchange.Redis.Extensions.AspNetCore Library

In this article, we are going to explore the integration of Redis cache in .Net5 Web API application using the 'StackExchange.Redis.Exntensions' library. Note:- Microsoft has introduced an 'IDistributedCache' interface in dotnet core which supports different cache stores like In-Memory, Redis, NCache, etc. It is simple and easy to work with  'IDistributedCache', for the Redis store with limited features but if we want more features of the Redis store we can choose to use 'StackExchange.Redis.Extensions'.  Click here for Redis Cache Integration Using IDistributedCache Interface . Overview On StackExchange.Redis.Extnesions Library: The 'StackExchange.Redis.Extension' library extended from the main library 'StackExchange.Redis'. Some of the key features of this library like: Default serialization and deserialization. Easy to save and fetch complex objects. Search key. Multiple Database Access Setup Redis Docker Instance: For this sampl

Endpoint Routing In Asp.Net Core

How Routing Works In  Core 2.1 And Below Versions?: In Asp.Net Core routing is configured using app.UseRouter() or app.UseMvc() middleware. app.UseMvc(routes => { routes.MapRoute( name: "default", template: "{controller=Home}/{action=Index}/{id?}"); }); Here in Dotnet Core version 2.1 or below versions on the execution of route middleware request will be navigated appropriate controller matched to the route. An operation or functionality which is dependent on route URL or route values and that need to be implemented before the execution of route middleware can be done by accessing the route path from the current request context as below app.Use(async (context, next) => { if(context.Request.Path.Value.IndexOf("oldvehicle") != -1) { context.Response.Redirect("vehicle"); } else { await next(); } }); app.UseMvc(routes => { routes.MapRoute( name: "vehicleRoute", template: "vehicle", defaul

Asp.Net Core MVC Form Validation Techniques

Introduction: Form validations in any applications are like assures that a valid data is storing on servers. All programing frameworks have their own individual implementations for form validations. In Dotnet Core MVC application server-side validations carried on by the models with the help of Data Annotations and the client-side validations carried by the plugin jQuery Unobtrusive Validation. jQuery Unobtrusive Validation is a custom library developed by Microsoft based on the popular library  jQuery Validate . In this article, we are going to learn how the model validation and client-side validation works in Asp.Net Core MVC Application with sample examples. Getting Started: Let's create an Asp.Net Core MVC application project using preferred editors like Microsoft Visual Studio or Microsoft Visual Studio Code. Here I'm using Visual Studio. Let's create an MVC controller and name it as 'PersonController.cs' and add an action method as bel

NestJS File Upload

In this article, we are going to understand the steps to create a file uploading endpoint in the NestJS application. Key Features In NestJS File Upload: Let us know some key features of NestJS file upload before implementing a sample application. FileInterceptor: The 'FileInterceptor' will be decorated on top of the file upload endpoint. This interceptor will read single file data from the form posted to the endpoint. export declare function FilesInterceptor(fieldName: string, localOptions?: MulterOptions): Type<NestInterceptor>; Here we can observe the 'fieldName' first input parameter this value should be a match with our 'name' attribute value on the form file input field. So our interceptor read our files that are attached to the file input field. Another input parameter of 'MulterOptions' that provides configuration like file destination path, customizing file name, etc. FilesInterceptor: The 'FilesInterceptor' will be decorated on t

.NET Core MVC Application File Upload To Physical Location With Buffered Technique

Buffering Technique In File Upload: The server will use its Memory(RAM) or Disk Storage to save the files on receiving a file upload request from the client.  Usage of Memory(RAM) or Disk depends on the number of file requests and the size of the file.  Any single buffered file exceeding 64KB is moved from Memory to a temp file on disk.  If an application receives heavy traffic of uploading files there might be a chance of out of Disk or RAM memory which leads to crash application. So this Buffer technique used for small files uploading. In the following article, we create a sample for the file uploading using .NET Core MVC application. Create The .NET Core MVC Project: Let's create a .NET Core MVC project, here for this sample I'm using Visual Studio Code as below.   Check the link to use the Visual Studio Code for .NET Core Application . IFormFile: Microsoft.AspNetCore.Http.IFormFile used for file upload with buffered technique. On uploading files f

Ionic Picker Sample Code In Angular

Introduction: Ionic Picker(ion-picker) is a popup slides up from the bottom of the device screen, which contains rows with selectable column separated items. The main building block of ion-picker as follows: PickerController PickerOptions PickerController: PickerController object helps in creating an ion-picker overlay. create(opts?: Opts): Promise<Overlay> PickerController create method helps in create the picker overlay with the picker options PickerOptions: PickerOptions is a configuration object used by PickerController to display ion-picker. Single Column Ionic Picker: single.item.picker.ts: import { Component } from "@angular/core"; import { PickerController } from "@ionic/angular"; import { PickerOptions } from "@ionic/core"; @Component({ selector: "single-column-picker", templateUrl:"single.item.picker.html" }) export class SingleItemPicker { animals: string[] = ["Tiger&quo

.Net Core HttpClient JSON Extension Methods Using System.Net.Http.Json Package

.Net Core 3.0 onwards Microsoft brought up a new package called System.Net.Http.Json. This new package provides JSON extension methods for HttpClient. These JSON extension methods will have a prebuild mechanism for serializing or deserializing response data or payload of HttpClient call. System.Net.Http.Json extension methods that are provided to HttpClient, few of them are mentioned below. GetFromJsonAsync PostAsJsonAsync PutAsJsonAsync ReadFromJsonAsync In this article, we understand System.Net.Http.Json package by implementing the HttpClient samples by with and without JSON extension methods and compare them. Create A .Net Core Web API Sample Application: Let's create a .Net Core sample Web API application, from this application we will consume another Web API by implementing HttpClient calls. We can create a Web API sample application using IDE like Visual Studio 2019(Supports .Net Core 3.0 plus) or  Visual Studio Code . Create A Typed Client: In .Net Core using the Http