Skip to main content

Fetching User IP Address And Geolocation In Blazor WebAssembly

In this article, we are going to fetch user public IP Addresses and Geolocation in the blazor webassembly application.

Third-Party APIs:

The API to get users IP Address endpoint:
https://jsonip.com/
Free endpoint, for official docs, visit "https://getjsonip.com/#docs".

The API to get users Geolocation based on users IP Address endpoint:
http://api.ipstack.com/User_IP?access_key=your_api_key&format=1
This endpoint has pricing subscription plans including the free subscription plan, for official docs, visit: "https://ipstack.com/"

Create A Sample Blazor WebAssembly:

Let's begin our demo by creating a sample Blazor WebAssembly application. For development, any type of IDE can be used but more recommended are Visual Studio 2019(Version 16.8.* latest that builds .Net5) or Visual Studio Code.

Fetch User IP Address:

Now let's create a model that represents the IP Address payload.
Models/IPAddress.cs:
using System.Text.Json.Serialization;

namespace Blwasm.IPGeolocation.Models
{
  public class IPAddress
  {
   [JsonPropertyName("ip")]
   public string IP{get;set;}

   [JsonPropertyName("geo-ip")]
   public string GeoIP{get;set;}

   [JsonPropertyName("API Help")]
   public string APIHelp{get;set;}
  }
}
  • The 'JsonPropertyName' attribute to map the payload parameters to c# class properties. This 'JsonPropertyName' attribute loads from the 'System.Text.Json.Serialization'
Now install an HTTP extension package that helps to register the named HTTP clients.
Package Manager
Install-Package Microsoft.Extensions.Http -Version 5.0.0
.Net CLI
dotnet add package Microsoft.Extensions.Http --version 5.0.0
Register HttpClient with IP Address base domain using named HTTP client technique.
Program.cs:
builder.Services.AddHttpClient("IP",(options) => {
  options.BaseAddress = new Uri("https://jsonip.com");
});
  • Here we register HTTP Client with the name "IP". This name should be used for creating an HTTP client object from the HttpClientFactory.
Now implement logic to fetch the IP Address API by creating a service file.
Services/IApiClietService.cs:
using System.Threading.Tasks;
using Blwasm.IPGeolocation.Models;

namespace Blwasm.IPGeolocation.Services
{
  public interface IApiClientService
  {
   Task<IPAddress> GetUserIPAsync();
  }
}
Services/ApiClientService.cs:
using System.Net.Http;
using System.Net.Http.Json;
using System.Threading.Tasks;
using Blwasm.IPGeolocation.Models;

namespace Blwasm.IPGeolocation.Services
{
  public class ApiClientService: IApiClientService
  {
   private readonly IHttpClientFactory _httpClientFactory;

   public ApiClientService(IHttpClientFactory httpClientfactory)
   {
	_httpClientFactory = httpClientfactory;
   }

   public async Task<IPAddress> GetUserIPAsync()
   {
   var client =  _httpClientFactory.CreateClient("IP");
   return await client.GetFromJsonAsync<IPAddress>("/");
   }
  }
}
  • (Line: 12) Injected the HttpClientFacotry.
  • (Line: 19) Creating an HTTP Client object from the HttpClientFacotry by inputting the name "IP".
  • (Line: 20) Invoking the API and converting the response to 'IPAddress' type with the help of an extension method like 'GetFromJsonAsync<>' that loads from System.Net.Http.Json. Here we passed the "/" as a path because domain itself returning the IP Address results.
Register these client call service to support the dependency injection.
Program.cs:
builder.Services.AddScoped<IApiClientService,ApiClientService>();
Now update the Index.razor page to display the user's IP Address.
Pages/Index.razor:(Html Part)
@page "/"
@inject IApiClientService _apiClientService;

<div>
 <h4>User Ip - @ipAddress.IP</h4>
</div>
  • Here using razor syntax injecting the 'IApiClientService'
Pages/Index.razor:(Code Part)
@code{
    IPAddress ipAddress = new IPAddress();
    protected override async  Task OnInitializedAsync()
    {
        ipAddress =  await _apiClientService.GetUserIPAsync();
    }
}
  • Inside of the lifecycle method like 'OnInitializedAsyn()' invoking the IP Address API call.

Fetch User's Geolocation:

Now let's create a payload model for the Geolocation API(HTTP://api.ipstack.com)
Models/UserGeolocation.cs:
using System;
using System.Collections.Generic;

namespace Blwasm.IPGeolocation.Models
{
    public class Language
    {
        public string code { get; set; }
        public string name { get; set; }
        public string native { get; set; }
    }

    public class Location
    {
        public int? geoname_id { get; set; }
        public string capital { get; set; }
        public List<Language> languages { get; set; }
        public string country_flag { get; set; }
        public string country_flag_emoji { get; set; }
        public string country_flag_emoji_unicode { get; set; }
        public string calling_code { get; set; }
        public bool? is_eu { get; set; }
    }

    public class TimeZone
    {
        public string id { get; set; }
        public DateTime current_time { get; set; }
        public int? gmt_offset { get; set; }
        public string code { get; set; }
        public bool is_daylight_saving { get; set; }
    }

    public class Currency
    {
        public string code { get; set; }
        public string name { get; set; }
        public string plural { get; set; }
        public string symbol { get; set; }
        public string symbol_native { get; set; }
    }

    public class Connection
    {
        public int? asn { get; set; }
        public string isp { get; set; }
    }

    public class Security
    {
        public bool is_proxy { get; set; }
        public object proxy_type { get; set; }
        public bool is_crawler { get; set; }
        public object crawler_name { get; set; }
        public object crawler_type { get; set; }
        public bool is_tor { get; set; }
        public string threat_level { get; set; }
        public object threat_types { get; set; }
    }

    public class UserGeoLocation
    {
        public string ip { get; set; }
        public string hostname { get; set; }
        public string type { get; set; }
        public string continent_code { get; set; }
        public string continent_name { get; set; }
        public string country_code { get; set; }
        public string country_name { get; set; }
        public string region_code { get; set; }
        public string region_name { get; set; }
        public string city { get; set; }
        public string zip { get; set; }
        public double? latitude { get; set; }
        public double? longitude { get; set; }
        public Location location { get; set; }
        public TimeZone time_zone { get; set; }
        public Currency currency { get; set; }
        public Connection connection { get; set; }
        public Security security { get; set; }
    }

}
Now register the HTTP client for the geolocation API
Program.cs:
builder.Services.AddHttpClient("Location", options => {
  options.BaseAddress = new Uri("http://api.ipstack.com");
});
  • Registered the geolocation API with the name 'Location'.
Implement logic for the geolocation API call.
Services/IApiClientService.cs:
Task<UserGeoLocation> GetLocationAsync(string userIp);
Services/ApiClientService.cs:
public async Task<UserGeoLocation> GetLocationAsync(string userIp)
{
	string path = $"{userIp}?access_key=Your_Secured_Key";
	var client = _httpClientFactory.CreateClient("Location");
	return await client.GetFromJsonAsync<UserGeoLocation>(path);
}
  • Here URL is made of the User Ip address and API secured key that's will get once registered with "HTTP://ipstack.com".
  • Creating the HTTP client object by using the name "Location" from the HttpClientFactory.
Now update the Index.razor page to display the geolocation data.
Pages/Index.razor:(Html Part)
<div>
 <h4>User Ip - @ipAddress.IP</h4>
 <ul>
     <li>Country - @location.country_name</li>
     <li>Regionname - @location.region_name</li>
     <li>City - @location.city</li>
 </ul>
</div>
Pages/Index.razor:(Code Part)
@code{
    IPAddress ipAddress = new IPAddress();
    UserGeoLocation location = new UserGeoLocation();
    protected override async  Task OnInitializedAsync()
    {
        ipAddress =  await _apiClientService.GetUserIPAsync();
        location = await _apiClientService.GetLocationAsync(ipAddress.IP);
    }
}
That's all about the fetching User IP Address and Geolocation in the blazor webassembly application.

Support Me!
Buy Me A Coffee PayPal Me

Wrapping Up:

Hopefully, I think this article delivered some useful information about fetching user IP Addresses and Geolocation in the Blazor Application. I love to have your feedback, suggestions, and better techniques in the comment section below.

Refer:

Follow Me:

Comments

Popular posts from this blog

Blazor WebAssembly Custom Authentication From Scratch

In this article, we are going to explore and implement custom authentication from the scratch. In this sample, we will use JWT authentication for user authentication. Main Building Blocks Of Blazor WebAssembly Authentication: The core concepts of blazor webassembly authentication are: AuthenticationStateProvider Service AuthorizeView Component Task<AuthenticationState> Cascading Property CascadingAuthenticationState Component AuthorizeRouteView Component AuthenticationStateProvider Service - this provider holds the authentication information about the login user. The 'GetAuthenticationStateAsync()' method in the Authentication state provider returns user AuthenticationState. The 'NotifyAuthenticationStateChaged()' to notify the latest user information within the components which using this AuthenticationStateProvider. AuthorizeView Component - displays different content depending on the user authorization state. This component uses the AuthenticationStateProvider

How Response Caching Works In Asp.Net Core

What Is Response Caching?: Response Caching means storing of response output and using stored response until it's under it's the expiration time. Response Caching approach cuts down some requests to the server and also reduces some workload on the server. Response Caching Headers: Response Caching carried out by the few Http based headers information between client and server. Main Response Caching Headers are like below Cache-Control Pragma Vary Cache-Control Header: Cache-Control header is the main header type for the response caching. Cache-Control will be decorated with the following directives. public - this directive indicates any cache may store the response. private - this directive allows to store response with respect to a single user and can't be stored with shared cache stores. max-age - this directive represents a time to hold a response in the cache. no-cache - this directive represents no storing of response and always fetch the fr

.Net5 Web API Managing Files Using Azure Blob Storage

In this article, we are going to understand the different file operations like uploading, reading, downloading, and deleting in .Net5 Web API application using Azure Blob Storage. Azure Blob Storage: Azure blob storage is Microsoft cloud storage. Blob storage can store a massive amount of file data as unstructured data. The unstructured data means not belong to any specific type, which means text or binary data. So something like images or pdf or videos to store in the cloud, then the most recommended is to use the blob store. The key component to creating azure blob storage resource: Storage Account:- A Storage account gives a unique namespace in Azure for all the data we will save. Every object that we store in Azure Storage has an address. The address is nothing but the unique name of our Storage Account name. The combination of the account name and the Azure Storage blob endpoint forms the base address for each object in our Storage account. For example, if our Storage Account is n

.Net5 Web API Redis Cache Using StackExchange.Redis.Extensions.AspNetCore Library

In this article, we are going to explore the integration of Redis cache in .Net5 Web API application using the 'StackExchange.Redis.Exntensions' library. Note:- Microsoft has introduced an 'IDistributedCache' interface in dotnet core which supports different cache stores like In-Memory, Redis, NCache, etc. It is simple and easy to work with  'IDistributedCache', for the Redis store with limited features but if we want more features of the Redis store we can choose to use 'StackExchange.Redis.Extensions'.  Click here for Redis Cache Integration Using IDistributedCache Interface . Overview On StackExchange.Redis.Extnesions Library: The 'StackExchange.Redis.Extension' library extended from the main library 'StackExchange.Redis'. Some of the key features of this library like: Default serialization and deserialization. Easy to save and fetch complex objects. Search key. Multiple Database Access Setup Redis Docker Instance: For this sampl

Endpoint Routing In Asp.Net Core

How Routing Works In  Core 2.1 And Below Versions?: In Asp.Net Core routing is configured using app.UseRouter() or app.UseMvc() middleware. app.UseMvc(routes => { routes.MapRoute( name: "default", template: "{controller=Home}/{action=Index}/{id?}"); }); Here in Dotnet Core version 2.1 or below versions on the execution of route middleware request will be navigated appropriate controller matched to the route. An operation or functionality which is dependent on route URL or route values and that need to be implemented before the execution of route middleware can be done by accessing the route path from the current request context as below app.Use(async (context, next) => { if(context.Request.Path.Value.IndexOf("oldvehicle") != -1) { context.Response.Redirect("vehicle"); } else { await next(); } }); app.UseMvc(routes => { routes.MapRoute( name: "vehicleRoute", template: "vehicle", defaul

Asp.Net Core MVC Form Validation Techniques

Introduction: Form validations in any applications are like assures that a valid data is storing on servers. All programing frameworks have their own individual implementations for form validations. In Dotnet Core MVC application server-side validations carried on by the models with the help of Data Annotations and the client-side validations carried by the plugin jQuery Unobtrusive Validation. jQuery Unobtrusive Validation is a custom library developed by Microsoft based on the popular library  jQuery Validate . In this article, we are going to learn how the model validation and client-side validation works in Asp.Net Core MVC Application with sample examples. Getting Started: Let's create an Asp.Net Core MVC application project using preferred editors like Microsoft Visual Studio or Microsoft Visual Studio Code. Here I'm using Visual Studio. Let's create an MVC controller and name it as 'PersonController.cs' and add an action method as bel

NestJS File Upload

In this article, we are going to understand the steps to create a file uploading endpoint in the NestJS application. Key Features In NestJS File Upload: Let us know some key features of NestJS file upload before implementing a sample application. FileInterceptor: The 'FileInterceptor' will be decorated on top of the file upload endpoint. This interceptor will read single file data from the form posted to the endpoint. export declare function FilesInterceptor(fieldName: string, localOptions?: MulterOptions): Type<NestInterceptor>; Here we can observe the 'fieldName' first input parameter this value should be a match with our 'name' attribute value on the form file input field. So our interceptor read our files that are attached to the file input field. Another input parameter of 'MulterOptions' that provides configuration like file destination path, customizing file name, etc. FilesInterceptor: The 'FilesInterceptor' will be decorated on t

.NET Core MVC Application File Upload To Physical Location With Buffered Technique

Buffering Technique In File Upload: The server will use its Memory(RAM) or Disk Storage to save the files on receiving a file upload request from the client.  Usage of Memory(RAM) or Disk depends on the number of file requests and the size of the file.  Any single buffered file exceeding 64KB is moved from Memory to a temp file on disk.  If an application receives heavy traffic of uploading files there might be a chance of out of Disk or RAM memory which leads to crash application. So this Buffer technique used for small files uploading. In the following article, we create a sample for the file uploading using .NET Core MVC application. Create The .NET Core MVC Project: Let's create a .NET Core MVC project, here for this sample I'm using Visual Studio Code as below.   Check the link to use the Visual Studio Code for .NET Core Application . IFormFile: Microsoft.AspNetCore.Http.IFormFile used for file upload with buffered technique. On uploading files f

Ionic Picker Sample Code In Angular

Introduction: Ionic Picker(ion-picker) is a popup slides up from the bottom of the device screen, which contains rows with selectable column separated items. The main building block of ion-picker as follows: PickerController PickerOptions PickerController: PickerController object helps in creating an ion-picker overlay. create(opts?: Opts): Promise<Overlay> PickerController create method helps in create the picker overlay with the picker options PickerOptions: PickerOptions is a configuration object used by PickerController to display ion-picker. Single Column Ionic Picker: single.item.picker.ts: import { Component } from "@angular/core"; import { PickerController } from "@ionic/angular"; import { PickerOptions } from "@ionic/core"; @Component({ selector: "single-column-picker", templateUrl:"single.item.picker.html" }) export class SingleItemPicker { animals: string[] = ["Tiger&quo

.Net Core HttpClient JSON Extension Methods Using System.Net.Http.Json Package

.Net Core 3.0 onwards Microsoft brought up a new package called System.Net.Http.Json. This new package provides JSON extension methods for HttpClient. These JSON extension methods will have a prebuild mechanism for serializing or deserializing response data or payload of HttpClient call. System.Net.Http.Json extension methods that are provided to HttpClient, few of them are mentioned below. GetFromJsonAsync PostAsJsonAsync PutAsJsonAsync ReadFromJsonAsync In this article, we understand System.Net.Http.Json package by implementing the HttpClient samples by with and without JSON extension methods and compare them. Create A .Net Core Web API Sample Application: Let's create a .Net Core sample Web API application, from this application we will consume another Web API by implementing HttpClient calls. We can create a Web API sample application using IDE like Visual Studio 2019(Supports .Net Core 3.0 plus) or  Visual Studio Code . Create A Typed Client: In .Net Core using the Http